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ABSTRACT 

This inves igation concerned the use of a laser velocimeter to de te r -  
The velocity mine point velocities in  a turbulent liquid flowing in a pipe. 

distribution was determined at each point and for each r a t e  of bulk flow. 
This method of measurement  affords data unaffected by any proturber-  
ance into the flow s t r eam,  The frequency response of the base instru- 
ment and electronics is sufficient to measu re  all frequencies of turbu- 
lence investigated. 

The data was verified by comparing the mean velocity profile cal- 
culated f rom the probability distribution function with profiles determined 
by other methods of mean velocity measurement.  The variance of the 
distribution function was verified with turbulent diffusion data. 

The velocity distribution function, as derived f rom statistical reason-  
ing, was found to properly describe the measured axial velocity components. 

The change in the variance of the velocity distribution function is 
der ived and i s  compared with the measured variance. 
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THE ANALYSIS OF TURBULENCE FROM DATA 
OBTAINED WITH A LASER VELOCIMETER 

N. E. Welchand W. J. Tomme* 
George C. Marshall Space Flight Center 

SUMMARY 

The Laser  Velocimeter was  utilized to obtain sampled velocity 
data in turbulent flow in a cylindrical pipe section without interrupting 
the flow field. 
several  rad i i  for Reynolds numbers between 4000 and 9500. The mean 
velocity and variance were calculated f rom each distribution function. 
The mean velocities were then plotted ve r sus  dimensionless radius and 
compared to Nikuradse' s correlation. The experimental and calculated 
values ag ree  within the expected e r r o r  of measurement  of the bulk flow 
rate. 
sured distribution functions and was found to be approximately 10 per -  
cent higher than values measured with Hot W i r e  Anemometers. 
difference could be the resul t  of white noise in the signal ra ther  than 
m o r e  accurate  measurements.  
character is t ics  of the flow field were also calculated f rom the velocity 
distribution function and compared with published eddy diffusivity data. 
However, e r r o r s  due to assumptions in the calculations and e r r o r s  in 
the published data allowed comparison of only g r o s s  effects. 

The velocity distribution function w a s  measured at 

The intensity of turbulence was a l so  calculated f rom the mea-  

This 

The longitudinal turbulent diffusion 

A mathematical expression of the velocity distribution function was 
derived on a statist ical  basis.  An expression for the variation of the 
distribution function with radius was also derived. Both expressions 
were  found to agree  with the data. 

:$ Brown Engineering Company, Technical Support Contractor. 



INTRODUCTION 

The various techniqu.es used to measure  the velocity of liquids in  
turbulent flow have traditionally involved the use of some device pro- 
truding into the flow s t ream.  
f r o m  sufficient frequency response; hence, turbulent measurements  
were  difficult. 
velocity through application of the doppler effect. 
tronic system was developed that enables the measurement  of the 
velocity distribution at  a point and with frequency response believed to 
be well above that required. 

Most devices of this type also suffer 

In this investigation, a beam of light is used to measure  
Further , a n  elec- 

The purpose of this investigation is to define the velocity distribu- 
tions for liquids in turbulent flow for various Reynolds numbers and at  
severa l  radial positions in  the pipe. 
measured,  and f rom them, the mean and the variance were  established. 
In addition, the distributions obtained a r e  i l lustrated revealing the skew- 
ness  as affected by the radial  position in the pipe. The resu l t s  obtained 
provide information on turbulent liquid flow that was not previously 
available. 

The velocity distributions were 

Previous investigators have used eddy diffusion data to determine 
inferences concerning the velocity distribution. 
George (Reference 1 )  described the technique for using the l a se r  for 
doppler measurement in  fluids. 

For  eman , Lewis , and 

DESCRIPTION O F  EQUIPMENT 

The velocimeter system is composed of th ree  separate  ele- 
ments. A liquid flow loop provided a constant bulk flow through 
a glass  tube of 2.2 c m  inside diameter.  Since the flow system 
is standard, it i s  not described herein.  A gas laser is  used with 
associated optical equipment and is  r e f e r r e d  to as  the optical sys- 
tem. The third par t  of the sys tem is the electronics,  which con- 
ver t s  the optical measurement  into a useable electronic signal. 

The Optical System 

An He - N e  gas laser  was used to provide a beam of coherent light 
that was directed through the glass  tube as shown in Figure 1 .  
point was located a t  six different positions throughout the course of the 

The focal 
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investigation. 
in the water. 
scattered a t  that angle. 
beam due to the doppler effect produced by the motion of the solids in  
the water. 
a photomultiplier, produce a heterodyne signal. 
described in this report ,  the heterodyne frequency was less than 500 
KH,. 
f rom the glass  tube. This feature enabled the t raverse  of the fluid with- 
in the pipe. 
dinal component of the velocity a t  the focal point, Concisely, the optical 
sys tem provided a heterodyne signal that was directly proportional to the 
longitudinal component of the fluid velocity a t  the focal point. 

Light is  scattered f rom the focal point by small par t ic les  
A lens  arranged a t  a known angle was to receive the l i g h t  

This light differs in frequency f rom the parent 

These two light beams, when recombined on the cathode of 
For  the studies 

The optical system was mounted on a moveable bed separate  

The optical arrangement was used to measure  the longitu- 

The Electronic System 

The photomultiplier shown in Figure 1 produces a small e lectr ical  
signal which is the heterodyne of the two light beam frequencies. This 
signal var ies  both in amplitude and in frequency. The amplitude var ia-  
tions a r e  caused by several  factors including the size of the par t ic les  
and their number and location in the scattering volume. The frequency 
variations a r e  caused by the changes in  liquid velocity. Noise is  present  
on the signal; a signal-to-noise ratio of one was typical. The amplitude 
of the heterodyne varied by as much as  40 db resulting in a highly discon- 
tinuous signal, Under these conditions, the use of a system making a 
continuous measurement of frequency was subject to much doubt, so the 
sys tem shown in Figure 2 was developed. This system measures  the 
frequency distribution function directly by scanning ac ross  the mean 
frequency. 
determined, and a fo rm of autocorrelation is established. 

The relative ra te  of occurrence of frequencies is then 

The signal f r o m  the photomultiplier is first amplified and filtered 
to remove all of the high frequency noise, including some radio frequency 
f r o m  the laser. 
the system. 
system, the "data one-shot" produces a very short  rectangular pulse. 
the same  time, two other one-shots a r e  energized. 
delay" and the "timing" one-shots, The latter two a r e  much longer in  
duration than the data pulse. 
for  three and one-half time constants of the heterodyne frequency. Its 
purpose is to prevent re- t r igger  of the timing one-shot until the a r r iva l  
of the fourth data pulse or a later one. When the timing one- shot turns 
off, i t  simultaneously energized the sample pulse. If this pulse is  coin- 
cident with a data pulse, the "and-gate" commands an event pulse which 

A trigger level i s  set so that noise alone would not tr igger 
When the positive half of the heterodyne wave t r iggers  the 

At 
These a r e  thellsample 

The sample delay one-shot stays energized 
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is of fixed duration. 
mine a relative r a t e  of occurrence at the t ime period dictated by the 
timing one-shot. 
continuously and linearly with t ime from one-half the period of the 
heterodyne frequency to three and one-half periods. 
of the integrated event pulse w a s  converted to digital records  for entry 
to a digital computer. 

The integration of these pulses would then deter-  

In normal operation, this timing one-shot was swept 

The analog voltage 

Another integrator develops an  analog voltage proportional to the 
average data ra te ,  and this is also digitized. Compensation is made for 
any variations in the data ra te ,  because this has a proportional effect on 
the output of the other integrator.  Normally, the data r a t e  was constant 
within five percent over the course of a run. 

PRESENTATION OF THE DATA 

Velocity distributions were obtained at the center l ine of the tube 
for four Reynold's numbers, and velocity profile measurements  were 
made at five radii .  Figures 3 through 6 show typical velocity distribu- 
tions obtained at Reynold's numbers of 4605, 7808, 8510, and 9310. 
Since the velocity is directly proportional to the heterodyne frequency, 
the velocity distribution functions were derived directly from the hetero- 
dyne frequency distributions. Table I shows the resu l t s  of five se r i e s  of 
runs with a s  many a s  eight runs  per  s e r i e s .  
variance,  and '17, the mean velocity, a r e  average values compiled over all 
runs.  The average bulk velocity, V, is also shown. 
data (2) , the center s t r e a m  velocity to bulk average velocity ra t ios  
differed over a l l  s e r i e s  by a n  average e r r o r  of l e s s  than 1 percent.  

The values for uz, the 

Using Nikuradse's 

The variation of the standard deviation with Reynolds number i s  
shown in Figure 7 .  
of center s t r eam velocity. 
cated is an  increase in turbulence with Re a s  would be expected. 

Some of this increase  in  u i s  a resu l t  of the increase  
This effect i s  l inear by nature.  Also indi- 

Figure 8 shows a velocity profile obtained by plotting the mean velo- 
cit ies obtained at several  radi i  within the pipe. The continuous curve 
represents  Nikuradse's data and in  general there  is very close agree-  
ment. Measurements closer to the wall a r e  possible but were incon- 
venient due to the changes required;  hence, they were not attempted dur-  
ing this investigation. 

Figure 9 i l lustrates the variation of the standard deviation with 
radius for  a Reynolds number of 8510. Indications a r e  that a maximum 
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i s  obtained in the vicinity of r / R  ratio of 0.75. 
created by the tube wall and the high center s t r eam velocity, this maxi- 
mum i s  in the region of maximum probability of eddy motion. 
standard deviation a s  a function of radius i s  discussed in detail in a 
la ter  section. 

Considering the shear 

The 

The combined velocity distributions obtained at r / R  rat ios  of 0.243, 

These measurements were  made a t  a Reynolds number of 
A 

The mean velocity 

0.405, 0.566, 0.729, and 0.825 a r e  shown in Figures  10 through 14 
respectively. 
8510. 
skewness appears  and increases  as  r approaches R .  
in all cases  was equal o r  l e s s  than the most  probable velocity. 

The center s t r eam distributions were all very nearly normal.  

The mean velocity and the variance were calculated by the standard 
definitions and a r e  shown a s  equations (1) and (2) .  

PROCESSING O F  THE DATA 

The electronic system delivers a se r i e s  of three distributions for 
These represent  the locations of the f i r s t ,  second and third each run ,  

heterodyne wave peaks following the beginning time a s  determined by 
the leading edge of the timing pulse. 
generated by turbulence and some noise. Since the noise is noncoherent, 
it is extracted statistically by assuming that the variance attributable to 
it is constant for a l l  three distributions, while that for turbulence i s  not. 
This implies that turbulence i s  coherent over a period of three t imes the 
heterodyne period or  approximately 20 micro  seconds. 
frequency distribution i s  obtained that can then be directly converted to 
velocity by equation (3 ) .  

These three distributions a r e  

A heterodyne 

v = K - f  (3)  

For the optical arrangement used, the value of K was 1. 5 x 
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ANALYSIS O F  THE DATA 

Derivation of the Velocity Distribution Function 

The probability distribution function for the axial velocity compo- 
nent, as utilized herein, can be derived f rom random walk theory, or 
by using the same procedural reasoning as that incorporated in the 
derivation of the Maxwell - Boltzmann equation for molecular velocity 
distributions in  gases.  However, since turbulence is  a macroscopic 
mechanism, and the axial  velocity component is an  incomplete measure  
of that mechanism, one must  proceed with reserve and considerable 
experimental verification. 

Choose a macroscopic spatial cell  s ize  A,  sufficiently la rge  that 
the average molecular velocities a r e  constant and equal for all cells ,  
but sufficiently small  that the large number theory is applicable to the 
turbulent region under consideration, and determine the distribution 
corresponding to a maximum likelihood of occurrence (canonical dis t r i -  
bution). The following equation is obtained. 

a pr ior i  probability that a given cell  will experience axial  
velocity Vi. 

number of cells of s ize  A with an  axial velocity V i .  

total number of cells i n  flow field. 

vi - u 
instantaneous axial velocity, 

mean axial velocity 



The continuous approximation i s  written as follows, 

3- +(v) Exp [ - X(v - u ) ~ ]  dv 

-00 

and f (v)dv is the probability that a cell  will experi- 
dN 

Where f(v) = - Ndv 
ence an axial velocity between v and v t dv. 

The nature of +(v)dv can be rationalized f rom known mean velocity 
profiles and shear s t r e s s  correlations. 
there  is no reason to believe that there i s  any velocity preference, so 
one can logically assume that +(v)dv CY dv. 
dition at the center of the pipe (r = 0). Furthermore,  since frictional 
l o s ses  are known to increase according to ?, it can reasonably be 
assumed that +(v) = l/vx. 
tion for Re = 10' indicates that x = ( r /R)7 where R is the radius of the 
pipe. 

If no shear i s  present  ( T ~ ~  = 0), 

This, of course, is the con- 

However, the mean velocity profile cor re la -  

This rationalization leads to the relation 

dv 
$(v)dv V 

Substituting equation (6) into equation (5) gives 

Exp [ -  X(v - u ) ~ ]  
f(v) = 

t m  
dv 

vx Exp [ - A(v - ul2 1 

On the axis (r = O), equation (7) reduces to 

2 Exp [- h(v - u)'] dv 

0 

I f  the indicated integration is performed and X is se t  equal to 1 /2cr2, 
the following equation i s  obtained. 
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(v - U)2 

Exp [- 2u2 ] 1 
f(v) = - 

" &  

F r o m  Figure 5 ,  10, and 11, it is  readily seen that for small values 
of r / R  the distribution is  normal,  

F r o m  Figure 14 it i s  seen that as  r / R  approaches 1, the high velo- 
city components become less probable than the low velocity components, 
as indicated by equation (7). 
co r rec t  amount of skewness for r / R  = 0.83 (Figure 14), indicating that 
the rationalization leading to the +(v)dv expression may have merit. 
However, there i s  not sufficient data available near the wall to fully 
verify the relationship at this time. 
correlated with the data by correlating u with the radius  and the Reynold's 
number for a radius ra t io  of 0 2 r / R  5 0 ,825  and a Reynold's number of 
Re  2 lo'. 
will be obtained in  the future. 

Furthermore,  +(v) = l /+  produces the 

In view of this, equation (8) was 

Verification of equation (7) and additional correlations of u 

Derivation of the Relationship between Standard 
Deviation (u) and Radius (r)  

The equation that descr ibes  the relationship between the standard 
deviation of the velocity distribution function and the radius  is a l so  
derivable f rom statistical mechanical considerations. This i s  accom- 
plished by determining the most  probable distribution of eddies as  a 
function of volume available per unit length of tube, that is, of volume 
available per unit length of tube that is compatible with two known 
physical res t ra ints .  

The canonical distribution in  this case i s  determined to be 

where 

n i  = number of eddies with volume Vi. 

Vi  = volume of eddy group i expressed as a fraction of the total 
volume per  unit length of pipe. 
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Let  gi = 4 r Vi2dVi that is ,  the a pr ior i  probability gi is equal to 
the fraction of the volume that lies between Vi and Vi + 

into equation (9 ) ,  and writing the continuous function approximation, 
the following equation is  obtained 

Substituting 

dn Exp (- pV) 
ndv - 1  P ( V )  = - - 

V2 Exp (- PV)dV 

0 

Performing the indicated integration gives 

P(V) = A b  V2 Exp (- PV) 

Where 

The area under the velocity distribution function between -(v - u) 
and t ( v  - u) i s  the probability that the axial velocity will lie in this range 
and i s  equal to ku. Since the axial velocity is  a resu l t  of the eddy condi- 
tion, P(V) should be proportional to cr; therefore 

P(V) = ku 

and 

u = A, V2 Exp (PV) 

where 

The fluid is motionless at the pipe wall so u - 0  a s  r +R.  If as  
r +R the volume available for the formation of eddies approaches zero,  
the u relationship holds. 
and the fluid has a tendency to form streamlines.  
approach a minimum a s  r + O  (V + l ) ,  and 

As r + O ,  the shear s t r e s s  approaches zero, 
Therefore, u should 
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Substituting , give s 

Further  mor e, 

U - = Exp (Q) V2 Exp (-QV) 
=0 

Since there is no reason to believe that anything other than volume, 
umin a t  V = 1, and u = 0 a t  V = 0 r e s t r a ins  the system, it is  only 
reasonable to assume that crmax occurs  at V = z, so 1 

1 
2 = -  Exp (Q) Exp 

o r  p = 4  

Substituting Q = 4, gives 

0- - = Exp (4) V2 Exp ( -  4V) 
uO 

However , 
2 2 R2 - r 

R2 V =  

therefor e,  

U - - - 54.6 [ 1 - k>']' Exp { -4[1 - E>"]) 
uO 

Figure 9 i s  a comparison of equation (12) and the experimental 
data. 
is an average standard deviation calculated f rom severa l  measured dis-  
tribution functions. 

The solid line is  calculated f rom equation (12)  and each data point 
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Equation (12)  agrees  surprisingly well with the data. The calculated 
value of u/uo deviates f rom the data less  than two percent in the worst  
case.  

An insufficient amount of data i s  available a t  this time to correlate  
the standard deviation with Reynold's number. However, the four values 
of standard deviation on the axis (uo) that have been obtained for Reynold's 
numbers f rom 4 x l o 3  to 0 x l o 3  a r e  shown in Figure 7. The variation of 
u with Reynold's number i s  approximately proportional to the Reynold's 
number to the 0 . 9  power. the pressure drop in  this range is proportional 
to the velocity to the 1 . 7  power, s o  uoz is  increasing approximately pro- 
portional to the p re s su re  drop. 

Check Against Turbulent Diffusion Data 

According to Taylor 's  treatment 

- 
vz T 

2 
D =- 

Where 

D = Eddy diffusivity 

vz = Mean square velocity 
- 

and T is  a time interval sufficiently la rge  that no correlation exists 
between v(t) and v(t t T) .  

- - -  
Since uz = v2 ,  vz can be obtained f rom equation (12) .  

R - 
u2 - 1 r u Z ( r ) d r  - RZ 

0 

where 

Substituting and performing the indicated integration, the following 
expr e s sion is obtained 
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for 
crns 
sec  

Re =8510 u o = 2 -  

and 

crns 7 = 7 . 7 2 , ~  
sec  

Since f(v) is  a normal  distribution near the axis of the pipe repre-  
senting a random distribution, the sampling period required to establish 
f(v) is equal to the t ime required for invariance (T) .  At the Reynold's 
number under consideration, this was found to be approximately twenty 
seconds. This time was determined by sampling through increasingly 
l a rge r  periods of time and plotting f(v) for each sampling period. The 
sampling time required for the normalized velocity distribution function 
(f(v)) to remain unchanged by increasing the sampling time was deter-  
mined , 

A set of distribution functions so determined are shown in Figure 15. 
These functions are not normalized so that the last two curves will not 
fall on top of one another, However, it can be seen that T E 20 secs .  

Substituting into equation (13), yields 

crns 
sec D =  77.2- 

Eddy diffusivity was determined for the corresponding value of 

Therefore, agreement  was obtained within the author 's  
Reynold's number using turbulent mixing data and was found to be 89 
cms' /sec.  
ability to determine T and D experimentally. 

When T i s  small, v( t  t T) v(t) Sv '  (t); that is, the correlat ion coeffi- 
In this case  a t r a c e r  will diffuse to produce cient is approximately unity. 

a distribution function of the same form as the velocity distribution 
function. 

Experiments were devised to measure  the concentration of a salt 
A pulse of salt t r ace r  t r ace r  downstream f rom the point of injection. 

with a t ime interval of l e s s  than 0 .  1 second was introduced a t  X = 0, and 
the conductivity was measured a s  a function of time at different values of 
X (distance downstream). 
one such run. As indicated in Figure 16, the data m o r e  closely approxi- 
mates  a normal distribution than the distribution calculated f r o m  the eddy 

Figure 16 i s  an  i l lustration of the results of 
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diffusion model, Since the point of measurement i s  close to the source 
and the eddy diffusion model does not produce the same shape of curve 
a s  the data, i t  may be surmised that the distance downstream from the 
source i s  sufficiently small  that the measured distribution is more  
closely associated with the distribution of the velocity of fluctuation, 
Therefore, the fact that the data shown in Figure 16 approximates a 
normal distribution indicates that the velocity distribution function that 
produced the diffusion was normal.  This i s ,  of course,  compatible with 
the correlated velocity distribution functions. 
gradient i s  measured a t  a point sufficiently distant f rom the source,  the 
eddy diffusion model will apply regardless  of the form of the velocity 
distribution function and will not be indicative of the la t te r .  

If the concentration 
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CONCLUSIONS 

The measured velocity distribution function i s  verified for  both its 
mean value and the variance. The mean velocities were verified with 
existing data by Nikuradse, and a profile in radius of the mean values 
is shown, 

The shape of the measured distribution function agreed with concen- 
tration gradients measured near the source,  
were verified by calculating the corresponding eddy diffusivities and 
comparing them with the measured eddy diffusivities. 

The measured variances 

The general velocity distribution function was established with data 
and a statistical derivation. 
accounts for the increase in skewness in the distribution function that 
appears  a s  the radius approaches the pipe wall. 
feel that sufficient data is yet available near the wall to completely con- 
firm the general velocity distribution function; however, the existing 
data shows good agreement. 
measured near the center of the pipe, i s  a normal distribution that is 
in  agreement with the derived general velocity distribution function. 

The general velocity distribution function 

The authors do not 

Further ,  the velocity distribution, a s  

It  was established that the distribution function and the variation in  
radius agreed with accepted statist ical  concepts. 

It is possible, a s  shown in this repor t ,  to derive the function descr ib-  
ing the variation of the variance a s  a function of radius using accepted 
statist ical  concepts of fluid mechanics. 
data obtained. 

This function i s  verified by the 
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FIGURE 3 - CENTERLINE VELOCITY DISTRIBUTION 
FOR A REYNOLDS NUMBER OF 4605 
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FIGURE 4 - CENTERLINE VELOCITY DISTRIBUTION 
FOR A REYNOLDS NUMBER O F  7808 
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FIGURE 5 - CENTERLINE VELOCITY DISTRIBUTION 
FOR A REYNOLDS NUMBER OF 8510 
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FIGURE 6 - CENTERLINE VELOCITY DISTRIBUTION 
FOR A REYNOLDS NUMBER O F  9310 
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FIGURE 8 - PROFILE OF MEAN VELOCITY AT A 
REYNOLDS NUMBER O F  8510 
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FIGURE 9 - STANDARD DEVIATION AT SEVERAL 
RADII FOR REYNOLDS NUMBER O F  8510 
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FIGURE 10 - VELOCITY DISTRIBUTION AT AN r / R  O F  
0.243 AND A REYNOLDS NUMBER O F  8510 

FIGURE 11 - VELOCITY DISTRIBUTION AT AN r / R  O F  
0.405 AND A REYNOLDS NUMBER O F  8510 
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FIGURE 12 - VELOCITY DISTRIBUTION AT AN r / R  O F  
0.566 AND A REYNOLDS NUMBER O F  8510 
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FIGURE 13 - VELOCITY DISTRIBUTION AT AN r / R  O F  
0.729 AND A REYNOLDS NUMBER O F  8510 
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FIGURE 14 - VELOCITY DISTRIBUTION AT AN r / R  O F  
0.825 AND A REYNOLDS NUMBER O F  8510 
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FIGURE 15 - EFFECT OF SAMPLING PERIOD 
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FIGURE 17 - CONCENTRATION GRADIENT CALCULATED FROM 
VELOCITY DISTRIBUTION FUNCTION 
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TABLE I 

RUN 
SERIES 

AVERAGE VALUES FOR VARLANCE 
AND VELOCITY AT CENTERLINE 

R2 ii V Re 

4 

5 

8 

9 

IO 

4605 1.33 26.86 20.93 

7800 2.97 45.82 35.49 

8510 3.98 50.25 38.68 

9310 6.23 54.02 42.32 

8510 3.09 49.84 38.68 
I I 
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